Environmental Consequences of Invasive Species: Greenhouse Gas Emissions of Insecticide Use and the Role of Biological Control in Reducing Emissions
نویسندگان
چکیده
Greenhouse gas emissions associated with pesticide applications against invasive species constitute an environmental cost of species invasions that has remained largely unrecognized. Here we calculate greenhouse gas emissions associated with the invasion of an agricultural pest from Asia to North America. The soybean aphid, Aphis glycines, was first discovered in North America in 2000, and has led to a substantial increase in insecticide use in soybeans. We estimate that the manufacture, transport, and application of insecticides against soybean aphid results in approximately 10.6 kg of carbon dioxide (CO2) equivalent greenhouse gasses being emitted per hectare of soybeans treated. Given the acreage sprayed, this has led to annual emissions of between 6 and 40 million kg of CO2 equivalent greenhouse gasses in the United States since the invasion of soybean aphid, depending on pest population size. Emissions would be higher were it not for the development of a threshold aphid density below which farmers are advised not to spray. Without a threshold, farmers tend to spray preemptively and the threshold allows farmers to take advantage of naturally occurring biological control of the soybean aphid, which can be substantial. We find that adoption of the soybean aphid economic threshold can lead to emission reductions of approximately 300 million kg of CO2 equivalent greenhouse gases per year in the United States. Previous studies have documented that biological control agents such as lady beetles are capable of suppressing aphid densities below this threshold in over half of the soybean acreage in the U.S. Given the acreages involved this suggests that biological control results in annual emission reductions of over 200 million kg of CO2 equivalents. These analyses show how interactions between invasive species and organisms that suppress them can interact to affect greenhouse gas emissions.
منابع مشابه
Estimating greenhouse gas emissions using emission factors from the Sugarcane Development Company, Ahvaz, Iran
Background: Greenhouse gas (GHG) emissions are increasing worldwide. They have harmful effects on human health, animals, and plants and play a major role in global warming and acid rain. Methods: This research investigated carbon dioxide (CO2) and CH4 emissions obtained from different parts of the Hakim Farabi, Dobal Khazaei, and Ramin factories which produce ethanol and yeast. Seasonal rates ...
متن کاملPrediction of Greenhouse Gas Emissions in Municipal Solid Waste Landfills Using LandGEM and IPCC Methods in Yazd, Iran
Introduction: The increase in greenhouse gas (GHG) emissions has changed the global temperature and had a negative impact on global climate conditions. Landfill gas is one of the major GHG contributors. With the knowledge of GHG inventory, it is possible to carry out disaster prevention measures. Materials and Methods: In this study, tow Landfill Gas Emissions Modeling (LandGEM) and Intergover...
متن کاملModeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملModeling and Optimization of Energy Inputs and Greenhouse Gas Emissions for Eggplant Production Using Artificial Neural Network and Multi-Objective Genetic Algorithm
This paper studies the modeling and optimization of energy use and greenhouse gas emissions of eggplant production using artificial neural network and multi-objective genetic algorithm in Guilan province of Iran. Results showed that the highest share of energy consumption belongs to diesel fuel (49.24%); followed by nitrogen (33.30%). The results indicated that a total energy input of 13910.67 ...
متن کاملA Comparative Study of Energy Use and Greenhouse Gas Emissions of Canola Production
In this research, the energy flow and production energy indices of canola cultivation in Trakya province of Turkey, Golestan and Mazandaran provinces of Iran were compared. Diesel fuel and chemical fertilizer inputs were the highest consumer of energy in the production of canola in these three regions. The results indicated that despite the higher energy use of machinery in Trakya province of T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013